GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH - TYPE SPACES AND F ( p , q , s ) SPACES

نویسندگان

  • Zhong Hua He
  • Guangfu Cao
چکیده

Let H(D) denote the space of all holomorphic functions on the unit disk D of C. Let φ be a holomorphic self-map of D, n be a positive integer and g ∈ H(D). In this paper, we investigate the boundedness and compactness of a generalized integration operator

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized composition operators from Bloch type spaces to QK type spaces

This paper characterizes the boundedness and compactness of the generalized composition operator (C φf)(z) = ∫ z 0 f ′(φ(ξ))g(ξ)dξ from Bloch type spaces to QK type spaces.

متن کامل

WEIGHTED COMPOSITION OPERATORS FROM F (p, q, s) TO BLOCH TYPE SPACES ON THE UNIT BALL

Let φ(z) = (φ1(z), · · · , φn(z)) be a holomorphic self-map of B and ψ(z) a holomorphic function on B, where B is the unit ball of C n . Let 0 < p, s < +∞,−n−1 < q < +∞, q + s > −1 and α ≥ 0, this paper gives some necessary and sufficient conditions for the weighted composition operator Wψ,φ induced by φ and ψ to be bounded and compact between the space F (p, q, s) and α-Bloch space β.

متن کامل

Differences of Generalized Composition Operators between Bloch Type Spaces

Let φ and ψ be analytic self-maps of the open unit disk D . Using pseudo-hyperbolic distance ρ(φ ,ψ) , we characterize the boundedness and compactness of the differences of generalized composition operators (C φ −Ch ψ ) f (z) = ∫ z 0 [ f ′(φ(ξ ))g(ξ )− f ′(ψ(ξ ))h(ξ )]dξ , z ∈ D between two Bloch-type spaces on D . The results generalize the corresponding results on the single generalized compo...

متن کامل

Products of Composition and Differentiation Operators from QK(p,q) Spaces to Bloch-Type Spaces

and Applied Analysis 3 Let D be the differentiation operator on H D , that is, Df z f ′ z . For f ∈ H D , the products of composition and differentiation operators DCφ and CφD are defined, respectively, by DCφ ( f ) ( f ◦ φ)′ f ′(φ) φ′, CφD ( f ) f ′ ( φ ) , f ∈ H D . 1.8 The boundedness and compactness of DCφ on the Hardy space were investigated by Hibschweiler and Portnoy in 11 and by Ohno in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013